Coronavirus

Mind & Brain

Health

Environment Technology

Discover World-Changing Science

Space & Physics

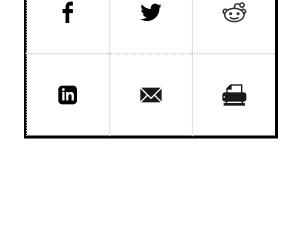
Subscribe

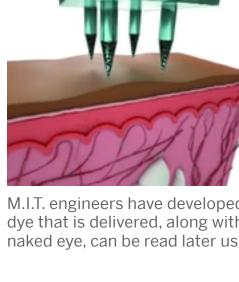
Video

Podcasts

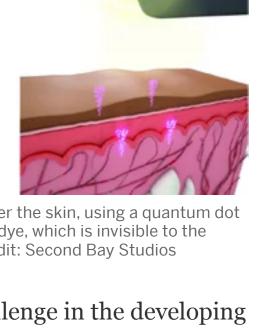
Opinion

Sign In | Newsletters


Q


BIOTECH

Invisible Ink Could Reveal whether Kids Have Been Vaccinated


By Karen Weintraub on December 18, 2019

The technology embeds immunization records into a child's skin

Keeping track of vaccinations remains a major challenge in the developing world, and even in many developed countries, paperwork gets lost, and parents forget whether their child is up to date. Now a group of

Massachusetts Institute of Technology researchers has developed a novel way to address this problem: embedding the record directly into the skin. Along with the vaccine, a child would be injected with a bit of dye that is invisible to the naked eye but easily seen with a special cell-phone filter, combined with an app that shines near-infrared light onto the skin. The

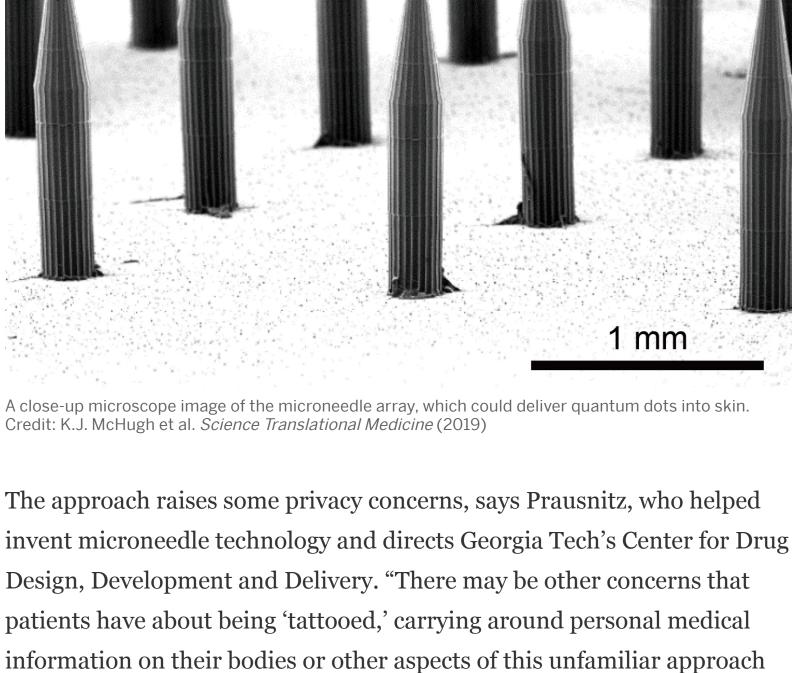
dye would be expected to last up to five years, according to tests on pig and rat skin and human skin in a dish. The system—which has not yet been tested in children—would provide quick and easy access to vaccination history, avoid the risk of clerical errors, and add little to the cost or risk of the procedure, according to the study, published Wednesday in Science Translational Medicine.

"Especially in developing countries where medical records may not be as

information directly associated with a person," says Mark Prausnitz, a

complete or as accessible, there can be value in having medical

bioengineering professor at the Georgia Institute of Technology, who was not involved in the new study. Such a system of recording medical information must be extremely discreet and acceptable to the person whose health information is being recorded and his or her family, he says. "This, I think, is a pretty interesting way to accomplish those goals." The research, conducted by M.I.T. bioengineers Robert Langer and Ana Jaklenec and their colleagues, uses a patch of tiny needles called


microneedles to provide an effective vaccination without a teeth-clenching

jab. Microneedles are embedded in a Band-Aid-like device that is placed

on the skin; a skilled nurse or technician is not required. Vaccines

delivered with microneedles also may not need to be refrigerated, reducing both the cost and difficulty of delivery, Langer and Jaklenec say. Delivering the dye required the researchers to find something that was safe and would last long enough to be useful. "That's really the biggest challenge that we overcame in the project," Jaklenec says, adding that the team tested a number of off-the-shelf dyes that could be used in the body but could not find any that endured when exposed to sunlight. The team

ended up using a technology called quantum dots, tiny semiconducting crystals that reflect light and were originally developed to label cells during research. The dye has been shown to be safe in humans.

tattoo." When people were still getting vaccinated for smallpox, which has since been eradicated worldwide, they got a visible scar on their arm from the shot that made it easy to identify who had been vaccinated and who had not, Jaklenec says. "But obviously, we didn't want to give people a scar," she says, noting that her team was looking for an identifier that would be invisible to the naked eye. The researchers also wanted to avoid technologies that would raise even more privacy concerns, such as iris

scans and databases with names and identifiable data, she says.

to storing medical records," he says. "Different people and different

cultures will probably feel differently about having an invisible medical

This approach is likely to be one of many trying to solve the problem of storing individuals' medical information, says Ruchit Nagar, a fourth-year student at Harvard Medical School, who also was not involved in the new study. He runs a company, called Khushi Baby, that is also trying to create a system for tracking such information, including vaccination history, in the developing world.

The researchers hope to add more detailed information to the dots, such

as the date of vaccination. Along with them, the team eventually wants to

inject sensors that could also potentially be used to track aspects of health

such as insulin levels in diabetics, Jaklenec says.

Sign up for Scientific American's free newsletters. Sign Up Working in the northern Indian state of Rajasthan, Nagar and his team have devised a necklace, resembling one worn locally, which compresses, encrypts and password protects medical information. The necklace uses

the same technology as radio-frequency identification (RFID) chips—such

as those employed in retail clothing or athletes' race bibs—and provides

health care workers access to a mother's pregnancy history, her child's

growth chart and vaccination history, and suggestions on what

vaccinations and other treatments may be needed, he says. But Nagar acknowledges the possible concerns all such technology poses. "Messaging and cultural appropriateness need to be considered," he says. Rights & Permissions ABOUT THE AUTHOR(S) Karen Weintraub is a freelance health and science journalist who writes regularly for the *New* York Times, STAT and USA Today, among others. Credit: Nick Higgins **Recent Articles by Karen Weintraub** Not Just Ventilators: Staff Trained to Run Them Are in Short Supply

Coronavirus Vaccines May Not Work for the Elderly--and This Lab Aims to Change That

NEWSLETTER

Get smart. Sign up for our email newsletter.

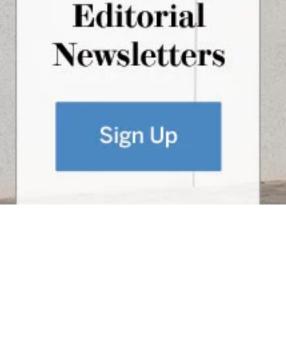
Sign Up

"Fake News" Web Sites May Not Have a Major Effect on Elections

POLICY & ETHICS

THE BODY

Karen Weintraub


READ THIS NEXT

The U.S. Should Tighten Vaccination Mandates THE EDITORS

Measles Infection Could Leave Kids

Vulnerable to Other Diseases

PUBLIC HEALTH We Deliver Vaccines to the World's Poorest, Hardest-to-Reach Children Seth Berkley

SCIENTIFIC AMERICAN.

Free

Support Science

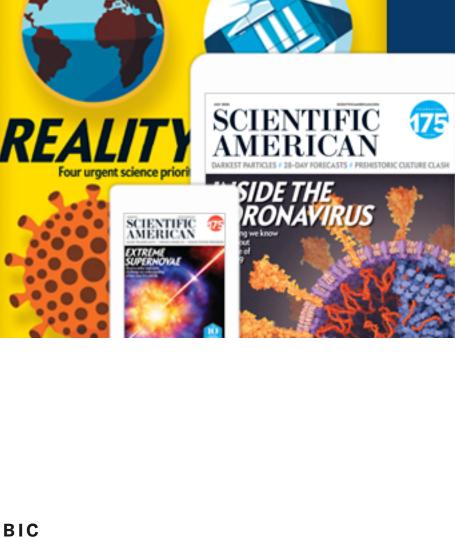
Journalism

Discover world-changing science. Explore our digital archive back to 1845, including articles by more than 150 Nobel Prize

FAQs

Contact Us

Site Map


Subscribe Now!

winners.

Return & Refund Policy

About

Press Room

AMERICAN

SCIENTIFIC AMERICAN ARABIC

FOLLOW US

Advertise

SA Custom Media

Terms of Use

2

www.springernature.com/us). Scientific American maintains a strict policy of editorial independence in reporting developments in science to our readers.

العربية

Privacy Policy California Consumer Privacy Statement Use of cookies/Do not sell my data

International Editions